Difference between revisions of "031 Review Part 2, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
           1 & k & 1 \\
 
           1 & k & 1 \\
 
           3 & 5  & 2k   
 
           3 & 5  & 2k   
 +
        \end{array}\right].</math>
 +
|-
 +
|Now, when we row reduce this matrix, we get
 +
|-
 +
|
 +
::<math>\left[\begin{array}{cc|c} 
 +
          1 & k & 1 \\
 +
          3 & 5  & 2k 
 +
        \end{array}\right] \sim \left[\begin{array}{cc|c} 
 +
          1 & k & 1 \\
 +
          0 & -3k+5  & -3+2k 
 
         \end{array}\right].</math>
 
         \end{array}\right].</math>
 
|}
 
|}
Line 38: Line 49:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|To guarantee a unique solution, our matrix must contain two pivots.
 +
|-
 +
|So, we must have &nbsp;<math>-3k+5\ne 0.</math>
 +
|-
 +
|Hence, we must have
 
|-
 
|-
 
|
 
|
 +
::<math>k\ne \frac {5}{3}.</math>
 +
|-
 +
|Therefore, &nbsp;<math>k</math>&nbsp; can be any real number except &nbsp;<math>\frac{5}{3}.</math>
 
|}
 
|}
  
Line 46: Line 66:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; The system has only one solution when &nbsp;<math>k</math>&nbsp; is any real number except &nbsp;<math>\frac{5}{3}.</math>
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:05, 10 October 2017

Consider the following system of equations.

Find all real values of    such that the system has only one solution.


Foundations:  
1. To solve a system of equations, we turn the system into an augmented matrix and
row reduce that matrix to determine the solution.
2. For a system to have a unique solution, we need to have no free variables.


Solution:

Step 1:  
To begin with, we turn this system into an augmented matrix.
Hence, we get
Now, when we row reduce this matrix, we get
Step 2:  
To guarantee a unique solution, our matrix must contain two pivots.
So, we must have  
Hence, we must have
Therefore,    can be any real number except  


Final Answer:  
       The system has only one solution when    is any real number except  

Return to Sample Exam