Difference between revisions of "031 Review Part 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Suppose <math style="vertical-align: 0px">T</math> is a linear transformation given by the formula |
− | |||
− | |||
− | |||
− | |||
− | |||
− | ::<math> | + | ::<math>T\Bigg( |
− | + | \begin{bmatrix} | |
− | + | x_1 \\ | |
− | + | x_2 \\ | |
− | 0 | + | x_3 \\ |
− | \end{bmatrix} | + | \end{bmatrix} |
− | + | \Bigg)= | |
− | <span class="exam">(a) | + | \begin{bmatrix} |
− | + | 5x_1-2.5x_2+10x_3 \\ | |
− | <span class="exam">(b) | + | -x_1+0.5x_2-2x_3 |
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <span class="exam">(a) Find the standard matrix for <math style="vertical-align: 0px">T.</math> | ||
+ | |||
+ | <span class="exam">(b) Let <math style="vertical-align: -5px">\vec{u}=7\vec{e_1}-4\vec{e_2}.</math> Find <math style="vertical-align: -6px">T(\vec{u}).</math> | ||
+ | |||
+ | <span class="exam">(c) Is <math style="vertical-align: -21px">\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 | ||
+ | \end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | ||
Line 42: | Line 47: | ||
'''(b)''' | '''(b)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | '''(c)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 19:09, 9 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |