Difference between revisions of "031 Review Part 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> Suppose <math style="vertical-align: 0px">T</math> is a linear transformation given by the formula |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | ::<math> | + | ::<math>T\Bigg( |
| − | + | \begin{bmatrix} | |
| − | + | x_1 \\ | |
| − | + | x_2 \\ | |
| − | 0 | + | x_3 \\ |
| − | \end{bmatrix} | + | \end{bmatrix} |
| − | + | \Bigg)= | |
| − | <span class="exam">(a) | + | \begin{bmatrix} |
| − | + | 5x_1-2.5x_2+10x_3 \\ | |
| − | <span class="exam">(b) | + | -x_1+0.5x_2-2x_3 |
| + | \end{bmatrix}</math> | ||
| + | |||
| + | <span class="exam">(a) Find the standard matrix for <math style="vertical-align: 0px">T.</math> | ||
| + | |||
| + | <span class="exam">(b) Let <math style="vertical-align: -5px">\vec{u}=7\vec{e_1}-4\vec{e_2}.</math> Find <math style="vertical-align: -6px">T(\vec{u}).</math> | ||
| + | |||
| + | <span class="exam">(c) Is <math style="vertical-align: -21px">\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | 3 | ||
| + | \end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | ||
| Line 42: | Line 47: | ||
'''(b)''' | '''(b)''' | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | '''(c)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 18:09, 9 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |