Difference between revisions of "031 Review Part 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Let |
| + | <math>B= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
| − | 1 & -4 & | + | 1 & -2 & 3 & 4\\ |
| − | + | 0 & 3 &0 &0\\ | |
| − | + | 0 & 5 & 1 & 2\\ | |
| − | \end{bmatrix}</math> | + | 0 & -1 & 3 & 6 |
| + | \end{bmatrix}. | ||
| + | </math> | ||
| + | |||
| + | <span class="exam">(a) Is <math style="vertical-align: 0px">B</math> invertible? Explain. | ||
| − | + | <span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <span class="exam">(a | ||
| − | |||
| − | |||
Revision as of 19:08, 9 October 2017
Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |