Difference between revisions of "031 Review Part 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.''' '''Click on the <span class...")
 
Line 4: Line 4:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009C_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]]==  
+
== [[031_Review Part 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]]==  
  
 
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
Line 25: Line 25:
  
  
== [[009C_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
 
<span class="exam"> Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
  
Line 50: Line 50:
  
  
== [[009C_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam">Let   
 
<span class="exam">Let   
 
&nbsp;<math>B=     
 
&nbsp;<math>B=     
Line 65: Line 65:
 
<span class="exam">(b) Define a linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; by the formula &nbsp;<math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math>&nbsp; Is &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; onto? Explain.
 
<span class="exam">(b) Define a linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; by the formula &nbsp;<math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math>&nbsp; Is &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; onto? Explain.
  
== [[009C_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Suppose &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation given by the formula  
 
<span class="exam"> Suppose &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation given by the formula  
  
Line 90: Line 90:
  
  
== [[009C_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam">Let &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; be &nbsp;<math style="vertical-align: 0px">6\times 6</math>&nbsp; matrices with &nbsp;<math style="vertical-align: -1px">\text{det }A=-10</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{det }B=5.</math>&nbsp; Use properties of determinants to compute:
 
<span class="exam">Let &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; be &nbsp;<math style="vertical-align: 0px">6\times 6</math>&nbsp; matrices with &nbsp;<math style="vertical-align: -1px">\text{det }A=-10</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{det }B=5.</math>&nbsp; Use properties of determinants to compute:
  
Line 98: Line 98:
  
  
== [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
<span class="exam"> Let &nbsp;<math>\vec{v}=\begin{bmatrix}
 
<span class="exam"> Let &nbsp;<math>\vec{v}=\begin{bmatrix}
 
           -1 \\
 
           -1 \\
Line 115: Line 115:
 
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
 
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
  
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
 
<span class="exam">(a) Let &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math>&nbsp; be a transformation given by  
 
<span class="exam">(a) Let &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math>&nbsp; be a transformation given by  
Line 143: Line 143:
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
  
== [[009C_Sample Final 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
 
<span class="exam">Let &nbsp;<math style="vertical-align: -31px">A=     
 
<span class="exam">Let &nbsp;<math style="vertical-align: -31px">A=     
Line 152: Line 152:
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
  
== [[009C_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
  
  
== [[009C_Sample Final 1,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
  
 
<span class="exam">(a) Suppose a &nbsp;<math style="vertical-align: 0px">6\times 8</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has 4 pivot columns. What is &nbsp;<math style="vertical-align: -1px">\text{dim Nul }A?</math>&nbsp; Is &nbsp;<math style="vertical-align: -1px">\text{Col }A=\mathbb{R}^4?</math>&nbsp; Why or why not?
 
<span class="exam">(a) Suppose a &nbsp;<math style="vertical-align: 0px">6\times 8</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has 4 pivot columns. What is &nbsp;<math style="vertical-align: -1px">\text{dim Nul }A?</math>&nbsp; Is &nbsp;<math style="vertical-align: -1px">\text{Col }A=\mathbb{R}^4?</math>&nbsp; Why or why not?
Line 163: Line 163:
 
<span class="exam">(b) If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math style="vertical-align: -1px">\text{Nul }A?</math>
 
<span class="exam">(b) If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math style="vertical-align: -1px">\text{Nul }A?</math>
  
== [[009C_Sample Final 1,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
+
== [[031_Review Part 2,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
  
 
<span class="exam">Consider the following system of equations.
 
<span class="exam">Consider the following system of equations.

Revision as of 18:48, 9 October 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  


 Problem 2 

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?


 Problem 3 

Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.

 Problem 4 

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.


 Problem 5 

Let    and    be    matrices with    and    Use properties of determinants to compute:

(a)  

(b)  


 Problem 6 

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

 Problem 7 

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  

 Problem 8 

Let    Find    if possible.

 Problem 9 

If    is an    matrix such that    what are the possible values of  


 Problem 10 

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  

 Problem 11 

Consider the following system of equations.

Find all real values of    such that the system has only one solution.