Difference between revisions of "031 Review Part 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math...") |
Kayla Murray (talk | contribs) |
||
| Line 4: | Line 4: | ||
!Solution: | !Solution: | ||
|- | |- | ||
| − | | | + | |If all the entries of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">7,</math> then all the rows of <math style="vertical-align: 0px">A</math> are identical. |
|- | |- | ||
| − | |So, | + | |So, when you row reduce <math style="vertical-align: -4px">A,</math> it is row equivalent to a matrix <math style="vertical-align: -4px">B,</math> where <math style="vertical-align: 0px">B</math> contains a row of zeros. |
| + | |- | ||
| + | |Then, | ||
|- | |- | ||
| | | | ||
| − | + | ::<math>\text{det } B=0.</math> | |
| − | + | |- | |
| − | &&\ | + | |But, <math style="vertical-align: -1px">\text{det }A</math> is a scalar multiple of <math style="vertical-align: -1px">\text{det }B.</math> |
| − | + | |- | |
| − | + | |So, | |
| − | + | |- | |
| − | \ | + | | |
| + | ::<math>\text{det }A=0</math> | ||
| + | |- | ||
| + | |and the statement is false. | ||
| + | |- | ||
|} | |} | ||
| Line 21: | Line 27: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | FALSE |
|} | |} | ||
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 15:00, 9 October 2017
True or false: If all the entries of a matrix are then must be
| Solution: |
|---|
| If all the entries of are then all the rows of are identical. |
| So, when you row reduce it is row equivalent to a matrix where contains a row of zeros. |
| Then, |
|
|
| But, is a scalar multiple of |
| So, |
|
|
| and the statement is false. |
| Final Answer: |
|---|
| FALSE |