Difference between revisions of "031 Review Problems"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 2: | Line 2: | ||
− | '''1.''' True or false: If all the entries of a <math>7\times 7</math> matrix <math>A</math> are <math>7,</math> then <math>\text{det }A</math> must be <math>7^7.</math> | + | '''1.''' True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">7,</math> then <math style="vertical-align: 0px">\text{det }A</math> must be <math style="vertical-align: 0px">7^7.</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 17: | Line 17: | ||
|} | |} | ||
− | '''2.''' True or false: If a matrix <math>A^2</math> is diagonalizable, then the matrix <math>A</math> must be diagonalizable as well. | + | '''2.''' True or false: If a matrix <math style="vertical-align: 0px">A^2</math> is diagonalizable, then the matrix <math style="vertical-align: 0px">A</math> must be diagonalizable as well. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 32: | Line 32: | ||
|} | |} | ||
− | '''3.''' True or false: If <math>A</math> is a <math>4\times 4</math> matrix with characteristic equation <math>\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math> then <math>A</math> is diagonalizable. | + | '''3.''' True or false: If <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: -1px">4\times 4</math> matrix with characteristic equation <math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math> then <math style="vertical-align: 0px">A</math> is diagonalizable. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 12:12, 25 August 2017
This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.
1. True or false: If all the entries of a matrix are then must be
Solution: |
---|
Final Answer: |
---|
2. True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.
Solution: |
---|
Final Answer: |
---|
3. True or false: If is a matrix with characteristic equation then is diagonalizable.
Solution: |
---|
Final Answer: |
---|
4. True or false: If is invertible, then is diagonalizable.
Solution: |
---|
Final Answer: |
---|
5. True or false: If and are invertible matrices, then so is
Solution: |
---|
Final Answer: |
---|
6. True or false: If is a matrix and then is consistent for all in
Solution: |
---|
Final Answer: |
---|
7. True or false: Let for matrices and If is invertible, then is invertible.
Solution: |
---|
Final Answer: |
---|
8. True or false: Let be a subspace of and be a vector in If and then
Solution: |
---|
Final Answer: |
---|
9. True or false: If is an invertible matrix, and and are matrices such that then
Solution: |
---|
Final Answer: |
---|
10.
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
Solution: |
---|
Final Answer: |
---|
11. Find the eigenvalues and eigenvectors of the matrix
Solution: |
---|
Final Answer: |
---|
12. Consider the matrix and assume that it is row equivalent to the matrix
(a) List rank and
(b) Find bases for and Find an example of a nonzero vector that belongs to as well as an example of a nonzero vector that belongs to
Solution: |
---|
Final Answer: |
---|
13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
Solution: |
---|
Final Answer: |
---|
14. Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
Solution: |
---|
Final Answer: |
---|
15. Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
Solution: |
---|
Final Answer: |
---|
16. Let and be matrices with and Use properties of determinants to compute:
(a)
(b)
Solution: |
---|
Final Answer: |
---|
17. Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Solution: |
---|
Final Answer: |
---|
18. Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Compute the orthogonal projection of onto
Solution: |
---|
Final Answer: |
---|
19. Let Is in Explain.
Solution: |
---|
Final Answer: |
---|
20.
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Solution: |
---|
Final Answer: |
---|
21. Let Find if possible.
Solution: |
---|
Final Answer: |
---|
22. Find a formula for by diagonalizing the matrix.
Solution: |
---|
Final Answer: |
---|
23.
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Solution: |
---|
Final Answer: |
---|
24. Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Solution: |
---|
Final Answer: |
---|
25. Give an example of a matrix with eigenvalues 5,-1 and 3.
Solution: |
---|
Final Answer: |
---|
26. Assume Find
Solution: |
---|
Final Answer: |
---|
27. If is an matrix such that what are the possible values of
Solution: |
---|
Final Answer: |
---|
28. Show that if is an eigenvector of the matrix product and then is an eigenvector of
Solution: |
---|
Final Answer: |
---|
29.
(a) Suppose a matrix has 4 pivot columns. What is Is Why or why not?
(b) If is a matrix, what is the smallest possible dimension of
Solution: |
---|
Final Answer: |
---|
30. Consider the following system of equations.
Find all real values of such that the system has only one solution.
Solution: |
---|
Final Answer: |
---|
31. Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of
Solution: |
---|
Final Answer: |
---|