Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 
|-
 
|-
|'''2.''' Also,
+
|'''2.''' Recall
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>

Revision as of 11:02, 27 March 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. Recall
       
3. How would you integrate  

        You can use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

Step 1:  
First, we write
       
Using the trig identity  
we have
       
Plugging in the last identity into one of the    we get

       

by using the identity again on the last equality.
Step 2:  
So, we have
       
For the first integral, we need to use  -substitution.
Let  
Then,  
So, we have
       
Step 3:  
We integrate to get

       


Final Answer:  
       

Return to Sample Exam