|
|
Line 15: |
Line 15: |
| | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | | | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> |
| |- | | |- |
− | |'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> | + | |'''2.''' Recall |
| + | |- |
| + | | <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> |
| |} | | |} |
| | | |
Revision as of 10:49, 27 March 2017
Find the following limits:
(a) If
find
(b) Find
(c) Evaluate
Foundations:
|
1. If we have
|
|
2. Recall
|
|
Solution:
(a)
Step 1:
|
First, we have
|
|
Therefore,
|
|
(b)
Step 1:
|
First, we write
|
|
Step 2:
|
Now, we have
|
|
(c)
Step 1:
|
First, we have
|
|
Step 2:
|
Now, we use the properties of limits to get
|
|
Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam