Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
|-
|'''2.''' &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
+
|'''2.''' Recall
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
|}
  

Revision as of 10:49, 27 March 2017

Find the following limits:

(a) If    find  

(b) Find  

(c) Evaluate  


Foundations:  
1. If    we have
       
2. Recall
       


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since    we have

       

Multiplying both sides by    we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we have
       
Step 2:  
Now, we use the properties of limits to get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam