Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp; We have &nbsp;<math style="vertical-align: -5px">f'(x)=24x^2-4x^3.</math>
+
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp;  
 
|-
 
|-
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have &nbsp;<math style="vertical-align: -6px">0=4x^2(6-x).</math>
+
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=24x^2-4x^3.</math>
 +
|-
 +
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">0=4x^2(6-x).</math>
 
|-
 
|-
 
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=6.</math>
 
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=6.</math>
 
|-
 
|-
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals: &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,6),(6,\infty).</math>  
+
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals:  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,6),(6,\infty).</math>  
 
|}
 
|}
  
Line 87: Line 93:
 
|We set &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|We set &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|-
 
|-
|So, we have &nbsp;<math style="vertical-align: -1px">0=12x(4-x).</math>&nbsp; Hence, &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=4</math>.
+
|So, we have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">0=12x(4-x).</math>&nbsp;  
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=4</math>.
 +
|-
 +
|This value breaks up the number line into three intervals:
 
|-
 
|-
|This value breaks up the number line into three intervals: &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>
 
|}
 
|}
  

Revision as of 13:42, 18 March 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  


Solution:

(a)

Step 1:  
We start by taking the derivative of   
We have  
Now, we set    So, we have
       
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:
       
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  

(b)

Step 1:  
The critical points of    occur at    and  
Plugging these values into    we get the critical points
         and  
Step 2:  
Using the first derivative test and the information from part (a),
   is not a local minimum or local maximum and
   is a local maximum.

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  
We have  
We set  
So, we have
        
Hence,    and  .
This value breaks up the number line into three intervals:
       
Step 2:  
Again, we use test points in these three intervals.
For    we have  
For    we have  
For    we have  
Thus,    is concave up on the interval    and concave down on the interval  
(d):  
Insert graph


Final Answer:  
   (a)      is increasing on    and decreasing on  
   (b)    The critical points are   and  
             is not a local minimum or local maximum and    is a local maximum.
   (c)     is concave up on the interval    and concave down on the interval  
   (d)    See above

Return to Sample Exam