Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 82: Line 82:
 
|If we multiply both sides of the last equation by &nbsp;<math>3,</math>&nbsp; we get
 
|If we multiply both sides of the last equation by &nbsp;<math>3,</math>&nbsp; we get
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-6=\lim_{x\rightarrow 8} xf(x)).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-6=\lim_{x\rightarrow 8} xf(x).</math>
 
|-
 
|-
 
|Now, using properties of limits, we have
 
|Now, using properties of limits, we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{10} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\
+
\displaystyle{-6} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\
 
& = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\
Line 101: Line 101:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 8} f(x)=\frac{-3}{4}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 8} f(x)=-\frac{3}{4}.</math>
 
|}
 
|}
  
Line 138: Line 138:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>10</math>
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>10</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>-\frac{3}{4}</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>1</math>
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>1</math>
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:37, 18 March 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(c)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam