Difference between revisions of "009A Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
|Now, we have
 
|Now, we have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=1,~f(2)=\frac{-1}{3}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=1,~f(2)=-\frac{1}{3}.</math>
 
|-
 
|-
 
|Therefore, the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>  
 
|Therefore, the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>  
 
|-
 
|-
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
+
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">-\frac{1}{3}.</math>
 
|}
 
|}
  
Line 61: Line 61:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">-\frac{1}{3}.</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:31, 18 March 2017

Find the absolute maximum and absolute minimum values of the function

on the interval  

Foundations:  
1. To find the absolute maximum and minimum of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   on an interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b],}

        we need to compare the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y}   values of our critical points with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b).}

2. To find the critical points for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),}   we set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0}   and solve for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}

        Also, we include the values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)}   is undefined.


Solution:

Step 1:  
To find the absolute maximum and minimum of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   on the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,2],}
we need to find the critical points of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x).}
Using the Quotient Rule, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\ &&\\ & = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\ &&\\ & = & \displaystyle{\frac{-2}{(1+x)^2}.} \end{array}}

We notice that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)\ne 0}   for any  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}
So, there are no critical points in the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,2].}
Step 2:  
Now, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=1,~f(2)=-\frac{1}{3}.}
Therefore, the absolute maximum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
and the absolute minimum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{3}.}


Final Answer:  
       The absolute maximum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}   and the absolute minimum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{3}.}

Return to Sample Exam