Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 46: | Line 46: | ||
|- | |- | ||
| | | | ||
− | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x} | + | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}} & = & \displaystyle{\frac{(-3)(-3-3)}{2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{18}{2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{9.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 67: | Line 73: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |This limit is <math> | + | |This limit is <math>\infty.</math> |
|} | |} | ||
Line 94: | Line 100: | ||
|- | |- | ||
| | | | ||
− | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}} | + | <math>\begin{array}{rcl} |
− | + | \displaystyle{\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{-\frac{3}{\sqrt{4}}}\\ | |
− | + | &&\\ | |
− | & | + | & = & \displaystyle{-\frac{3}{2}.} |
+ | \end{array}</math> | ||
|} | |} | ||
Line 108: | Line 115: | ||
| '''(a)''' <math style="vertical-align: 0px">9</math> | | '''(a)''' <math style="vertical-align: 0px">9</math> | ||
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: 0px"> | + | | '''(b)''' <math style="vertical-align: 0px">\infty</math> |
|- | |- | ||
| '''(c)''' <math style="vertical-align: -15px">-\frac{3}{2}</math> | | '''(c)''' <math style="vertical-align: -15px">-\frac{3}{2}</math> | ||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:09, 18 March 2017
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
(b)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
This limit is |
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
Final Answer: |
---|
(a) |
(b) |
(c) |