Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=-x,</math>&nbsp; we get
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=-x,</math>&nbsp; we get
 
|-
 
|-
|<math style="vertical-align: -5px">u_1=0</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=-a.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=0</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=-a.</math>
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
Line 120: Line 120:
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=4-x,</math>&nbsp; we get  
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=4-x,</math>&nbsp; we get  
 
|-
 
|-
|<math style="vertical-align: -5px">u_1=4-1=3</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=4-a.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=4-1=3</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=4-a.</math>
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes

Revision as of 12:47, 18 March 2017

Evaluate the improper integrals:

(a)  

(b)  

Foundations:  
1. How could you write   so that you can integrate?

        You can write  

2. How could you write  

        The problem is that    is not continuous at  

        So, you can write  

3. How would you integrate  

       You can use integration by parts.

       Let    and  


Solution:

(a)

Step 1:  
First, we write  
Now, we proceed using integration by parts.
Let    and  
Then,    and  
Thus, the integral becomes

       

Step 2:  
For the remaining integral, we need to use  -substitution.
Let    Then,  
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation    we get
         and  
Thus, the integral becomes

       

Step 3:  
Now, we evaluate to get

       

Using L'Hôpital's Rule, we get

       

(b)

Step 1:  
First, we write  
Now, we proceed by  -substitution.
We let    Then,  
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation    we get
         and  
Thus, the integral becomes

       

Step 2:  
We integrate to get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam