Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;You could use &nbsp;<math style="vertical-align: -1px">u</math>-substitution. Let &nbsp;<math style="vertical-align: 0px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2xdx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;You could use &nbsp;<math style="vertical-align: -1px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math style="vertical-align: 0px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2xdx.</math>
 
|-
 
|-
 
|
 
|
Line 38: Line 40:
 
|Plugging our values into the equation &nbsp;<math style="vertical-align: -4px">u=t^2,</math>&nbsp; we get  
 
|Plugging our values into the equation &nbsp;<math style="vertical-align: -4px">u=t^2,</math>&nbsp; we get  
 
|-
 
|-
|<math style="vertical-align: -5px">u_1=(-1)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=x^2.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=(-1)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=x^2.</math>
 
|}
 
|}
  
Line 70: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If we take the derivative, we get &nbsp;<math style="vertical-align: -5px">f'(x)=\sin(x^2)2x,</math>&nbsp; since &nbsp;<math style="vertical-align: -5px">\cos(1)</math>&nbsp; is just a constant.
+
|If we take the derivative, we get &nbsp;<math style="vertical-align: -5px">f'(x)=\sin(x^2)2x,</math>&nbsp; since &nbsp;<math style="vertical-align: -5px">\cos(1)</math>&nbsp; is a constant.
 
|}
 
|}
  

Revision as of 12:39, 18 March 2017

We would like to evaluate

(a) Compute  

(b) Find  

(c) State the Fundamental Theorem of Calculus.

(d) Use the Fundamental Theorem of Calculus to compute    without first computing the integral.

Foundations:  
How would you integrate  

       You could use  -substitution.

       Let    Then,  

       So, we get  


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Plugging our values into the equation    we get
         and  
Step 2:  
So, we have

       


(b)

Step 1:  
From part (a), we have  
Step 2:  
If we take the derivative, we get    since    is a constant.

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let    be continuous on    and let    be any antiderivative of  
       Then,  
(d)  
By the Fundamental Theorem of Calculus, Part 1,

       


Final Answer:  
   (a)    
   (b)    
   (c)    See above
   (d)    

Return to Sample Exam