Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 153: Line 153:
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=1</math> since <math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
+
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:20, 18 March 2017

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.


Foundations:  
1. If  
        then  
2.    is continuous at    if
       


Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of    that are smaller than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of    that are bigger than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
 is continuous at  


Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)       is continuous at    since  

Return to Sample Exam