Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 121: | Line 121: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' See solution above. | + | | '''(a)''' See solution above. |
|- | |- | ||
| − | | '''(b)''' <math style="vertical-align: - | + | | '''(b)''' <math style="vertical-align: -5px">\sin(\cos(x))\cdot(-\sin(x))</math> |
|- | |- | ||
| − | | '''(c)''' <math style="vertical-align: - | + | | '''(c)''' <math style="vertical-align: -3px">1</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 10:04, 18 March 2017
This problem has three parts:
(a) State the Fundamental Theorem of Calculus.
(b) Compute
(c) Evaluate
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
Part 1 of the Fundamental Theorem of Calculus says that |
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Part 2 of the Fundamental Theorem of Calculus says that |
| where is any antiderivative of |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} be any antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f.} |
| Then, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)~dx=F(b)-F(a).} |
(b)
| Step 1: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\int_0^{\cos (x)}\sin (t)~dt.} |
| The problem is asking us to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x).} |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\cos(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x)=\int_0^x \sin(t)~dt.} |
| Then, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=G(g(x)).} |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, |
| we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=G'(g(x))g'(x)} |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=-\sin(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G'(x)=\sin(x)} |
| by the Fundamental Theorem of Calculus, Part 1. |
| Since |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G'(g(x))=\sin(g(x))=\sin(\cos(x)),} |
| we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).} |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.} |
| Step 2: |
|---|
| So, we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.} |
| Final Answer: |
|---|
| (a) See solution above. |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\cos(x))\cdot(-\sin(x))} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} |