Difference between revisions of "009C Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' '''Direct Comparison Test'''
+
|'''Direct Comparison Test'''
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences where &nbsp;<math style="vertical-align: -3px">a_n\le b_n</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences where &nbsp;<math style="vertical-align: -3px">a_n\le b_n</math>  
Line 14: Line 14:
 
|&nbsp; &nbsp; &nbsp; &nbsp; for all &nbsp;<math style="vertical-align: -3px">n\ge N</math>&nbsp; for some &nbsp;<math style="vertical-align: -3px">N\ge 1.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; for all &nbsp;<math style="vertical-align: -3px">n\ge N</math>&nbsp; for some &nbsp;<math style="vertical-align: -3px">N\ge 1.</math>
 
|-
 
|-
|'''2.''' If &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges, then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges, then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges.
 
|-
 
|-
|'''3.''' If &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges, then &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; '''2.''' If &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges, then &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
|}
  
Line 68: Line 68:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; diverges
+
|&nbsp; &nbsp; &nbsp; &nbsp; diverges (by the Direct Comparison Test)
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:34, 18 March 2017

Determine convergence or divergence:


Foundations:  
Direct Comparison Test
        Let    and    be positive sequences where  
        for all    for some  
        1. If    converges, then    converges.
        2. If    diverges, then    diverges.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is the harmonic series (or  -series with   )
Hence,    diverges.
Step 3:  
Also, we have    since
       
for all  
Therefore, the series    diverges
by the Direct Comparison Test.


Final Answer:  
        diverges (by the Direct Comparison Test)

Return to Sample Exam