Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You can use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=x^2+x.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=x^2+x.</math>  
Line 79: Line 79:
 
|Also, we need to change the bounds of integration.  
 
|Also, we need to change the bounds of integration.  
 
|-
 
|-
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=x^4+2x^2+4,</math>  
+
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=x^4+2x^2+4,</math>&nbsp; we get
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math>
 
|-
 
|-
 
|Therefore, the integral becomes
 
|Therefore, the integral becomes

Revision as of 13:37, 14 March 2017

Evaluate

(a)  

(b)  


Foundations:  
How would you integrate  

        You can use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We multiply the product inside the integral to get

       

Step 2:  
We integrate to get
      
We now evaluate to get

       

(b)

Step 1:  
We use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation    we get
         and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

Therefore,
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam