Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 35: | Line 35: | ||
|First, we distribute to get | |First, we distribute to get | ||
|- | |- | ||
| − | | <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t- | + | | <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.</math> |
|- | |- | ||
|Then, we integrate to get | |Then, we integrate to get | ||
Revision as of 12:31, 14 March 2017
Otis Taylor plots the price per share of a stock that he owns as a function of time
and finds that it can be approximated by the function
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)=t(25-5t)+18}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the time (in years) since the stock was purchased.
Find the average price of the stock over the first five years.
| Foundations: |
|---|
| The average value of a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} on an interval is given by |
Solution:
| Step 1: |
|---|
| This problem wants us to find the average value of over the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,5].} |
| Using the average value formula, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.} |
| Step 2: |
|---|
| First, we distribute to get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.} |
| Then, we integrate to get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.} |
| Step 3: |
|---|
| We now evaluate to get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\ &&\\ & = & \displaystyle{\frac{233}{6}.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{233}{6}} |