Difference between revisions of "009A Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 71: | Line 71: | ||
\displaystyle{g'(x)} & = & \displaystyle{(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'}\\ | \displaystyle{g'(x)} & = & \displaystyle{(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{1}{2}x^{\frac{ | + | & = & \displaystyle{\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}+0}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{1}{2}x^{\frac{ | + | & = & \displaystyle{\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 83: | Line 83: | ||
| '''(a)''' <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}</math> | | '''(a)''' <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}</math> | ||
|- | |- | ||
− | | '''(b)''' <math>\frac{1}{2}x^{\frac{ | + | | '''(b)''' <math>\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}</math> |
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:23, 13 March 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b) for
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Power Rule |
Solution:
(a)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, we use the Product Rule to get |
|
(b)
Step 1: |
---|
First, we have |
Step 2: |
---|
Since is a constant, is also a constant. |
Hence, |
Therefore, we have |
Final Answer: |
---|
(a) |
(b) |