Difference between revisions of "009A Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
& = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\
 
& = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-3}{\sqrt{-2x+5}}.}
+
& = & \displaystyle{-\frac{3}{\sqrt{-2x+5}}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 60: Line 60:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{-3}{\sqrt{-2x+5}}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-\frac{3}{\sqrt{-2x+5}}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:19, 13 March 2017

Use the definition of the derivative to compute     for  


Foundations:  


Solution:

Step 1:  
Let  
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       


Final Answer:  
       

Return to Sample Exam