Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 103: Line 103:
 
|Hence,  
 
|Hence,  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>dx=2udu.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>dx=2u~du.</math>
 
|-
 
|-
 
|Using all this information, we get
 
|Using all this information, we get
Line 163: Line 163:
 
|To complete this integral, we need to use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|To complete this integral, we need to use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
|For the first integral, let &nbsp;<math style="vertical-align: -3px">t=u+1.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">dt=du.</math>
+
|For the first integral, let &nbsp;<math style="vertical-align: -3px">t=u+1.</math>&nbsp;  
 
|-
 
|-
|For the second integral, let &nbsp;<math style="vertical-align: -2px">v=u-1.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">dv=du.</math>
+
|Then, &nbsp;<math style="vertical-align: -1px">dt=du.</math>
 +
|-
 +
|For the second integral, let &nbsp;<math style="vertical-align: -2px">v=u-1.</math>&nbsp;  
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -1px">dv=du.</math>
 
|-
 
|-
 
|Finally, we integrate to get
 
|Finally, we integrate to get

Revision as of 14:50, 12 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by    we get
       
Step 2:  
Now, if we let    we get  
If we let    we get  
Therefore,
       
Step 3:  
Now, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Hence, we have
       

(b)

Step 1:  
We begin by using  -substitution.
Let  
Then,    and  
Also, we have
       
Hence,
       
Using all this information, we get
       
Step 2:  
Now, we have
       
Step 3:  
Now, for the remaining integral, we use partial fraction decomposition.
Let
       
Then, we multiply this equation by    to get
       
If we let    we get  
If we let    we get  
Thus, we have
       
Using this equation, we have
       
Step 4:  
To complete this integral, we need to use  -substitution.
For the first integral, let   
Then,  
For the second integral, let   
Then,  
Finally, we integrate to get
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam