Difference between revisions of "009B Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
|First, we need to find the intersection points of &nbsp;<math style="vertical-align: -5px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=x^2.</math>
 
|First, we need to find the intersection points of &nbsp;<math style="vertical-align: -5px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=x^2.</math>
 
|-
 
|-
|To do this, we need to solve &nbsp;<math style="vertical-align: 0px">x=x^2.</math>
+
|To do this, we need to solve  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">x=x^2.</math>
 
|-
 
|-
 
|Moving all the terms on one side of the equation, we get  
 
|Moving all the terms on one side of the equation, we get  
Line 43: Line 45:
 
|We use the washer method to calculate this volume.  
 
|We use the washer method to calculate this volume.  
 
|-
 
|-
|The outer radius is &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}=2-x^2</math>&nbsp; and
+
|The outer radius is  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}=2-x^2</math>&nbsp;  
 +
|-
 +
|and the inner radius is
 
|-
 
|-
|the inner radius is &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}=2-x.</math>&nbsp;
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}=2-x.</math>&nbsp;
 
|-
 
|-
 
|Therefore, the volume of the solid is  
 
|Therefore, the volume of the solid is  

Revision as of 13:29, 12 March 2017

Find the volume of the solid obtained by rotating the region bounded by the curves  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2}   about the line  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2.}

Foundations:  
1. You can find the intersection points of two functions, say   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),g(x),}

        by setting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=g(x)}   and solving for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}

2. The volume of a solid obtained by rotating an area around the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis using the washer method is given by

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{inner}}}   is the inner radius of the washer and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{outer}}}   is the outer radius of the washer.


Solution:

Step 1:  
First, we need to find the intersection points of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2.}
To do this, we need to solve
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=x^2.}
Moving all the terms on one side of the equation, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{0} & = & \displaystyle{x^2-x}\\ &&\\ & = & \displaystyle{x(x-1).} \end{array}}
Hence, these two curves intersect at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1.}
So, we are interested in the region between  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   and  
Step 2:  
We use the washer method to calculate this volume.
The outer radius is
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{outer}}=2-x^2}  
and the inner radius is
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{inner}}=2-x.}  
Therefore, the volume of the solid is
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{V} & = & \displaystyle{\int_0^1 \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx}\\ &&\\ & = & \displaystyle{\int_0^1 \pi((2-x^2)^2-(2-x)^2)~dx.} \end{array}}
Step 3:  
Now, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{V} & = & \displaystyle{\pi \int_0^1 ((4-4x^2+x^4)-(4-4x+x^2))~dx}\\ &&\\ & = & \displaystyle{\pi \int_0^1 (4x-5x^2+x^4)~dx}\\ &&\\ & = & \displaystyle{\pi\bigg(2x^2-\frac{5x^3}{3}+\frac{x^5}{5}\bigg)\bigg|_0^1}\\ &&\\ & = & \displaystyle{\pi\bigg(2-\frac{5}{3}+\frac{1}{5}\bigg)-0}\\ &&\\ & = & \displaystyle{\frac{8\pi}{15}.} \end{array}}


Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{8\pi}{15}}

Return to Sample Exam