Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 69: Line 69:
 
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">A=\frac{1}{2}.</math>
 
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">A=\frac{1}{2}.</math>
 
|-
 
|-
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{-1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">B=\frac{-1}{2}.</math>
+
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">B=-\frac{1}{2}.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\sum_{n=1}^\infty \frac{1}{(2n-1)(2n+1)}} & = & \displaystyle{\sum_{n=1}^\infty \frac{\frac{1}{2}}{2n-1}+\frac{\frac{-1}{2}}{2n+1}}\\
+
\displaystyle{\sum_{n=1}^\infty \frac{1}{(2n-1)(2n+1)}} & = & \displaystyle{\sum_{n=1}^\infty \frac{\frac{1}{2}}{2n-1}+\frac{-\frac{1}{2}}{2n+1}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2} \sum_{n=1}^\infty \frac{1}{2n-1}-\frac{1}{2n+1}.}
 
& = & \displaystyle{\frac{1}{2} \sum_{n=1}^\infty \frac{1}{2n-1}-\frac{1}{2n+1}.}

Revision as of 17:24, 10 March 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  

Foundations:  
1. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.
2. The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
Let    be the  th term of this sum.
We notice that
          and  
So, this is a geometric series with  
Since    this series converges.
Step 2:  
Hence, the sum of this geometric series is

       

(b)

Step 1:  
We begin by using partial fraction decomposition. Let
       
If we multiply this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we look at the partial sums,    of this series.
First, we have
       
Also, we have
       
and
       
If we compare    we notice a pattern.
We have
       
Step 3:  
Now, to calculate the sum of this series we need to calculate
       
We have
       
Since the partial sums converge, the series converges and the sum of the series is  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam