Difference between revisions of "009C Sample Final 2, Problem 5"
Jump to navigation
Jump to search
| Line 61: | Line 61: | ||
|- | |- | ||
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | ||
| + | |- | ||
| + | | | ||
|- | |- | ||
| <math>T_0=\frac{\sqrt{2}}{2}</math> | | <math>T_0=\frac{\sqrt{2}}{2}</math> | ||
Revision as of 17:21, 10 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
| Foundations: |
|---|
| The Taylor polynomial of at is |
|
where |
Solution:
| Step 1: | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Let | ||||||||||||||||||||
| First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
|
| Step 2: |
|---|
| Let be the Taylor polynomial of order |
| Since we have |
| Final Answer: |
|---|
| Let be the Taylor polynomial of order |