Difference between revisions of "009C Sample Final 2, Problem 5"
| Line 61: | Line 61: | ||
|- | |- | ||
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | ||
| + | |- | ||
| + | | | ||
|- | |- | ||
| <math>T_0=\frac{\sqrt{2}}{2}</math> | | <math>T_0=\frac{\sqrt{2}}{2}</math> | ||
Revision as of 16:21, 10 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\cos(x)} at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{\pi}{4}.}
| Foundations: |
|---|
| The Taylor polynomial of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} is |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty}c_n(x-a)^n} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_n=\frac{f^{(n)}(a)}{n!}.} |
Solution:
| Step 1: | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=\frac{\pi}{4}.} | ||||||||||||||||||||
| First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
| Step 2: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n} be the Taylor polynomial of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n.} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_n=\frac{f^{(n)}(a)}{n!},} we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_0=\frac{\sqrt{2}}{2}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_1=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_2=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_3=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2+\frac{\sqrt{2}}{12}\bigg(x-\frac{\pi}{4}\bigg)^3.} |
| Final Answer: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n} be the Taylor polynomial of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n.} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_0=\frac{\sqrt{2}}{2}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_1=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_2=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_3=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2+\frac{\sqrt{2}}{12}\bigg(x-\frac{\pi}{4}\bigg)^3} |