Difference between revisions of "009C Sample Final 2, Problem 5"
Jump to navigation
Jump to search
Line 61: | Line 61: | ||
|- | |- | ||
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | ||
+ | |- | ||
+ | | | ||
|- | |- | ||
| <math>T_0=\frac{\sqrt{2}}{2}</math> | | <math>T_0=\frac{\sqrt{2}}{2}</math> |
Revision as of 17:21, 10 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
Foundations: |
---|
The Taylor polynomial of at is |
where |
Solution:
Step 1: | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Let | ||||||||||||||||||||
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
Step 2: |
---|
Let be the Taylor polynomial of order |
Since we have |
Final Answer: |
---|
Let be the Taylor polynomial of order |