Difference between revisions of "009C Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
|-
 
|-
 
|
 
|
<table border="1" cellspacing="0" cellpadding="6" align = "center">
+
<table border="1" cellspacing="0" cellpadding="11" align = "center">
 
   <tr>
 
   <tr>
 
     <td align = "center"><math> n</math></td>
 
     <td align = "center"><math> n</math></td>
Line 77: Line 77:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math style="vertical-align: -4px">T_n</math>&nbsp; be the Taylor polynomial of order &nbsp;<math>n.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math style="vertical-align: -4px">T_n</math>&nbsp; be the Taylor polynomial of order &nbsp;<math>n.</math>
 +
|-
 +
|&nbsp;
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>T_0=\frac{\sqrt{2}}{2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>T_0=\frac{\sqrt{2}}{2}</math>

Revision as of 17:11, 10 March 2017

Find the Taylor Polynomials of order 0, 1, 2, 3 generated by    at  

Foundations:  
The Taylor polynomial of     at     is

        where


Solution:

Step 1:  
Let  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Let    be the Taylor polynomial of order  
Since     we have
       
       
       
       


Final Answer:  
       Let    be the Taylor polynomial of order  
 
       
       
       
       

Return to Sample Exam