Difference between revisions of "009C Sample Final 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 21: | Line 21: | ||
|- | |- | ||
| | | | ||
− | <table border="1" cellspacing="0" cellpadding=" | + | <table border="1" cellspacing="0" cellpadding="11" align = "center"> |
<tr> | <tr> | ||
<td align = "center"><math> n</math></td> | <td align = "center"><math> n</math></td> | ||
Line 77: | Line 77: | ||
|- | |- | ||
| Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> | | Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> | ||
+ | |- | ||
+ | | | ||
|- | |- | ||
| <math>T_0=\frac{\sqrt{2}}{2}</math> | | <math>T_0=\frac{\sqrt{2}}{2}</math> |
Revision as of 17:11, 10 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
Foundations: |
---|
The Taylor polynomial of at is |
where |
Solution:
Step 1: | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Let | ||||||||||||||||||||
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
Step 2: |
---|
Let be the Taylor polynomial of order |
Since we have |
Final Answer: |
---|
Let be the Taylor polynomial of order |