Difference between revisions of "009C Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
|-
 
|-
 
|So, the power series of &nbsp;<math style="vertical-align: -5px">\sin(x^2)</math> &nbsp; is  
 
|So, the power series of &nbsp;<math style="vertical-align: -5px">\sin(x^2)</math> &nbsp; is  
|-
+
|-
 +
|&nbsp;
 +
|-  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\
 
\displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\
Line 28: Line 30:
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.}
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|&nbsp;
 
|}
 
|}
  
Line 35: Line 39:
 
|Now, to express the indefinite integral as a power series, we have
 
|Now, to express the indefinite integral as a power series, we have
 
|-
 
|-
 +
|&nbsp;
 +
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
 
\displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
Line 42: Line 48:
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|&nbsp;
 
|}
 
|}
  
Line 63: Line 71:
 
|Hence, we have
 
|Hence, we have
 
|-
 
|-
 +
|&nbsp;
 +
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 \sin(x^2)~dx} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n (1)^{4n+3}}{(4n+3)(2n+1)!}-\sum_{n=0}^\infty \frac{(-1)^n (0)^{4n+3}}{(4n+3)(2n+1)!}}\\
 
\displaystyle{\int_0^1 \sin(x^2)~dx} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n (1)^{4n+3}}{(4n+3)(2n+1)!}-\sum_{n=0}^\infty \frac{(-1)^n (0)^{4n+3}}{(4n+3)(2n+1)!}}\\
Line 70: Line 80:
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}}
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|&nbsp;
 
|}
 
|}
  

Revision as of 17:09, 10 March 2017

(a) Express the indefinite integral    as a power series.

(b) Express the definite integral    as a number series.

Foundations:  
What is the power series of  
        The power series of    is  


Solution:

(a)

Step 1:  
The power series of    is  
So, the power series of     is
 
       
 
Step 2:  
Now, to express the indefinite integral as a power series, we have
 
       
 

(b)

Step 1:  
From part (a), we have
       
Now, we have
       
Step 2:  
Hence, we have
 
       
 


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam