Difference between revisions of "009C Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 22: | Line 22: | ||
|- | |- | ||
|So, the power series of <math style="vertical-align: -5px">\sin(x^2)</math> is | |So, the power series of <math style="vertical-align: -5px">\sin(x^2)</math> is | ||
− | |- | + | |- |
+ | | | ||
+ | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
\displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\ | \displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\ | ||
Line 28: | Line 30: | ||
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.} | & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.} | ||
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | | | ||
|} | |} | ||
Line 35: | Line 39: | ||
|Now, to express the indefinite integral as a power series, we have | |Now, to express the indefinite integral as a power series, we have | ||
|- | |- | ||
+ | | | ||
+ | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
\displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\ | \displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\ | ||
Line 42: | Line 48: | ||
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.} | & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.} | ||
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | | | ||
|} | |} | ||
Line 63: | Line 71: | ||
|Hence, we have | |Hence, we have | ||
|- | |- | ||
+ | | | ||
+ | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
\displaystyle{\int_0^1 \sin(x^2)~dx} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n (1)^{4n+3}}{(4n+3)(2n+1)!}-\sum_{n=0}^\infty \frac{(-1)^n (0)^{4n+3}}{(4n+3)(2n+1)!}}\\ | \displaystyle{\int_0^1 \sin(x^2)~dx} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n (1)^{4n+3}}{(4n+3)(2n+1)!}-\sum_{n=0}^\infty \frac{(-1)^n (0)^{4n+3}}{(4n+3)(2n+1)!}}\\ | ||
Line 70: | Line 80: | ||
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}} | & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}} | ||
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | | | ||
|} | |} | ||
Revision as of 17:09, 10 March 2017
(a) Express the indefinite integral as a power series.
(b) Express the definite integral as a number series.
Foundations: |
---|
What is the power series of |
The power series of is |
Solution:
(a)
Step 1: |
---|
The power series of is |
So, the power series of is |
Step 2: |
---|
Now, to express the indefinite integral as a power series, we have |
(b)
Step 1: |
---|
From part (a), we have |
Now, we have |
Step 2: |
---|
Hence, we have |
Final Answer: |
---|
(a) |
(b) |