Difference between revisions of "009C Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 6: | Line 6: | ||
|'''Taylor's Theorem''' | |'''Taylor's Theorem''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: - | + | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval <math style="vertical-align: 0px">I</math>, and let <math style="vertical-align: 0px">c</math> be in <math style="vertical-align: 0px">I.</math> |
|- | |- | ||
| Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that | | Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that |
Revision as of 16:56, 10 March 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
Foundations: |
---|
Taylor's Theorem |
Let be a function whose derivative exists on an interval , and let be in |
Then, for each in there exists between and such that |
where |
Also, |
Solution:
Step 1: |
---|
Using Taylor's Theorem, we have that the error in approximating with |
the Maclaurin polynomial of degree is where |
Step 2: | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We note that | ||||||||||||||||
or | ||||||||||||||||
Therefore, we have | ||||||||||||||||
Now, we have the following table. | ||||||||||||||||
So, is the smallest value of where the error is less than or equal to 0.0001. | ||||||||||||||||
Therefore, for the Maclaurin polynomial approximates within 0.0001 of the actual value. |
Final Answer: |
---|