Difference between revisions of "009A Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}} \frac{\big(\frac{1}{\sqrt{x}}\big)}{\big(\frac{1}{\sqrt{x}}\big)}}\\
|
+
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 41: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\big(\frac{1}{x^{3/2}}+\sqrt{x}\big)}{\lim_{x\rightarrow \infty}\big(\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\frac{1}{x^{3/2}}+\lim_{x\rightarrow \infty}\sqrt{x}}{\lim_{x\rightarrow \infty}\frac{1}{\sqrt{x}}+\lim_{x\rightarrow \infty}\sqrt{\frac{1}{x}+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{0+\lim_{x\rightarrow \infty}\sqrt{x}}{0+1}}\\
 +
&&\\
 +
& = & \displaystyle{\infty.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 119: Line 131:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\infty</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\text{DNE}</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\text{DNE}</math>

Revision as of 21:17, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
Now, we have
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       
and
       
Therefore,
       

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we have
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam