Difference between revisions of "009A Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we have |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
− | + | \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}} \frac{\big(\frac{1}{\sqrt{x}}\big)}{\big(\frac{1}{\sqrt{x}}\big)}}\\ | |
− | + | &&\\ | |
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 41: | Line 43: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\big(\frac{1}{x^{3/2}}+\sqrt{x}\big)}{\lim_{x\rightarrow \infty}\big(\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}\big)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\frac{1}{x^{3/2}}+\lim_{x\rightarrow \infty}\sqrt{x}}{\lim_{x\rightarrow \infty}\frac{1}{\sqrt{x}}+\lim_{x\rightarrow \infty}\sqrt{\frac{1}{x}+1}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{0+\lim_{x\rightarrow \infty}\sqrt{x}}{0+1}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\infty.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 119: | Line 131: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>\infty</math> |
|- | |- | ||
| '''(b)''' <math>\text{DNE}</math> | | '''(b)''' <math>\text{DNE}</math> |
Revision as of 21:17, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
First, we have |
Step 2: |
---|
Now, we have |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
and |
Therefore, |
(c)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
Now, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |