Difference between revisions of "009A Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}} \frac{\big(\frac{1}{\sqrt{x}}\big)}{\big(\frac{1}{\sqrt{x}}\big)}}\\
|
+
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 41: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\big(\frac{1}{x^{3/2}}+\sqrt{x}\big)}{\lim_{x\rightarrow \infty}\big(\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\frac{1}{x^{3/2}}+\lim_{x\rightarrow \infty}\sqrt{x}}{\lim_{x\rightarrow \infty}\frac{1}{\sqrt{x}}+\lim_{x\rightarrow \infty}\sqrt{\frac{1}{x}+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{0+\lim_{x\rightarrow \infty}\sqrt{x}}{0+1}}\\
 +
&&\\
 +
& = & \displaystyle{\infty.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 119: Line 131:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\infty</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\text{DNE}</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\text{DNE}</math>

Revision as of 20:17, 7 March 2017

Compute

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}}

(c)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}}

Foundations:  
L'Hôpital's Rule
        Suppose that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} f(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} g(x)}   are both zero or both  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty .}

        If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}}   is finite or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty ,}

        then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.}


Solution:

(a)

Step 1:  
First, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}} \frac{\big(\frac{1}{\sqrt{x}}\big)}{\big(\frac{1}{\sqrt{x}}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}.} \end{array}}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}}\\ &&\\ & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\big(\frac{1}{x^{3/2}}+\sqrt{x}\big)}{\lim_{x\rightarrow \infty}\big(\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}\big)}}\\ &&\\ & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\frac{1}{x^{3/2}}+\lim_{x\rightarrow \infty}\sqrt{x}}{\lim_{x\rightarrow \infty}\frac{1}{\sqrt{x}}+\lim_{x\rightarrow \infty}\sqrt{\frac{1}{x}+1}}}\\ &&\\ & = & \displaystyle{\frac{0+\lim_{x\rightarrow \infty}\sqrt{x}}{0+1}}\\ &&\\ & = & \displaystyle{\infty.} \end{array}}

(b)

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.} \end{array}}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\ &&\\ & = & \displaystyle{-\infty} \end{array}}
and
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\ &&\\ & = & \displaystyle{\infty.} \end{array}}
Therefore,
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.}

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.} \end{array}}

Step 2:  
Now, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ &&\\ & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ &&\\ & = & \displaystyle{\frac{3}{10}.} \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty}
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{DNE}}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}}

Return to Sample Exam