Difference between revisions of "009A Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math>[a,b],</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; we need to compare the &nbsp;<math style="vertical-align: -5px">y</math>&nbsp; values of our critical points with &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b).</math>
 
|-
 
|-
|
+
|'''2.''' To find the critical points for &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we set &nbsp;<math style="vertical-align: -5px">f'(x)=0</math>&nbsp; and solve for &nbsp;<math style="vertical-align: -1px">x.</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; Also, we include the values of &nbsp;<math style="vertical-align: -1px">x</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined.
 
|}
 
|}
  
Line 23: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,2],</math>
 +
|-
 +
|we need to find the critical points of &nbsp;<math style="vertical-align: -5px">f(x).</math>
 +
|-
 +
|Using the Quotient Rule, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-2}{(1+x)^2}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|We notice that &nbsp;<math style="vertical-align: -6px">f'(x)\ne 0</math>&nbsp; for any &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|
+
|So, there are no critical points in the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
|}
 
|}
  
Line 35: Line 48:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=1,~f(2)=\frac{-1}{3}.</math>
 +
|-
 +
|Therefore, the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>
 
|-
 
|-
|
+
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
|}
  
Line 44: Line 61:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:45, 7 March 2017

Find the absolute maximum and absolute minimum values of the function

on the interval  

Foundations:  
1. To find the absolute maximum and minimum of    on an interval  

        we need to compare the    values of our critical points with    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(b).}

2. To find the critical points for    we set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0}   and solve for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}

        Also, we include the values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)}   is undefined.


Solution:

Step 1:  
To find the absolute maximum and minimum of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   on the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,2],}
we need to find the critical points of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x).}
Using the Quotient Rule, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\ &&\\ & = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\ &&\\ & = & \displaystyle{\frac{-2}{(1+x)^2}.} \end{array}}

We notice that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)\ne 0}   for any  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}
So, there are no critical points in the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,2].}
Step 2:  
Now, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=1,~f(2)=\frac{-1}{3}.}
Therefore, the absolute maximum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
and the absolute minimum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-1}{3}.}


Final Answer:  
       The absolute maximum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}   and the absolute minimum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-1}{3}.}

Return to Sample Exam