Difference between revisions of "009A Sample Final 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we take the derivative of the equation &nbsp;<math style="vertical-align: 0px">PV=C.</math>
 +
|-
 +
|Using the product rule, we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>P'V+PV'=C'.</math>
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; is a constant, &nbsp;<math style="vertical-align: -1px">C'=0.</math>&nbsp;
 
|-
 
|-
|
+
|Therefore, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>P'V+PV'=0.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Solving for &nbsp;<math style="vertical-align: -4px">V',</math>&nbsp; we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>V'=\frac{-P'V}{P}.</math>
 +
|-
 +
|Using the information provided in the problem, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">V=600 \text{ cm}^3,~P=150 \text{ kPa},~P'=20 \text{ kPa/min}.</math>&nbsp;
 +
|-
 +
|Hence, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{V'} & = & \displaystyle{\frac{-(20)(600)}{150} \text{ cm}^3\text{/min}}\\
 +
&&\\
 +
& = & \displaystyle{-80 \text{ cm}^3\text{/min}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Therefore, the volume is decreasing at a rate of &nbsp;<math style="vertical-align: -5px">80 \text{ cm}^3\text{/min}</math>&nbsp; at this instant.
 
|}
 
|}
  
Line 36: Line 55:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;The volume is decreasing at a rate of &nbsp;<math style="vertical-align: -5px">80 \text{ cm}^3\text{/min}</math>&nbsp; at this instant.
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:57, 7 March 2017

Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure    and volume    satisfy the equation    where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C}   is a constant. Suppose that at a certain instant, the volume is    the pressure is    and the pressure is increasing at a rate of    At what rate is the volume decreasing at this instant?

Foundations:  
Product Rule
       


Solution:

Step 1:  
First, we take the derivative of the equation  
Using the product rule, we get
       
Since    is a constant,   
Therefore, we have
       
Step 2:  
Solving for    we get
       
Using the information provided in the problem, we have
        
Hence, we get

       

Therefore, the volume is decreasing at a rate of    at this instant.


Final Answer:  
       The volume is decreasing at a rate of    at this instant.

Return to Sample Exam