Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 81: Line 81:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|To find the intervals when the function is concave up or concave down, we need to find &nbsp;<math style="vertical-align: -5px">f''(x).</math>
 
|-
 
|-
|
+
|We have &nbsp;<math style="vertical-align: -5px">f''(x)=48x-12x^2.</math>
 
|-
 
|-
|
+
|We set &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|-
 
|-
|
+
|So, we have &nbsp;<math style="vertical-align: -1px">0=12x(4-x).</math>&nbsp; Hence, &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=4</math>.
 
|-
 
|-
|
+
|This value breaks up the number line into three intervals: &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>
 
|}
 
|}
  
Line 95: Line 95:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Again, we use test points in these three intervals.
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=-1,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=-60<0.</math>
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=1,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=48>0.</math>
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=5,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=-60<0.</math>
 +
|-
 +
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(0,4)</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty).</math>
 
|}
 
|}
  
Line 120: Line 122:
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and &nbsp;<math style="vertical-align: -5px">(6,436)</math>&nbsp; is a local maximum.
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and &nbsp;<math style="vertical-align: -5px">(6,436)</math>&nbsp; is a local maximum.
 
|-
 
|-
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(0,4)</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty).</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(d)'''&nbsp; &nbsp; See above
 
|&nbsp; &nbsp;'''(d)'''&nbsp; &nbsp; See above
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 21:37, 6 March 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  


Solution:

(a)

Step 1:  
We start by taking the derivative of    We have  
Now, we set    So, we have  
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:  
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  

(b)

Step 1:  
The critical points of    occur at    and  
Plugging these values into    we get the critical points
         and  
Step 2:  
Using the first derivative test and the information from part (a),
   is not a local minimum or local maximum and
   is a local maximum.

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  
We have  
We set  
So, we have    Hence,    and  .
This value breaks up the number line into three intervals:  
Step 2:  
Again, we use test points in these three intervals.
For    we have  
For    we have  
For    we have  
Thus,    is concave up on the interval    and concave down on the interval  
(d):  
Insert graph


Final Answer:  
   (a)      is increasing on    and decreasing on  
   (b)    The critical points are   and  
             is not a local minimum or local maximum and    is a local maximum.
   (c)     is concave up on the interval    and concave down on the interval  
   (d)    See above

Return to Sample Exam