Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|The critical points of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; occur at &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=6.</math>
 +
|-
 +
|Plugging these values into &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we get the critical points
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(6,436).</math>
 
|}
 
|}
  
Line 67: Line 69:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Using the first derivative test and the information from part (a),
 +
|-
 +
|&nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and
 +
|-
 +
|&nbsp;<math style="vertical-align: -4px">(6,436)</math>&nbsp; is a local maximum.
 
|}
 
|}
  
Line 110: Line 116:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; The critical points are <math style="vertical-align: -4px">(0,4)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(6,436).</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and &nbsp;<math style="vertical-align: -5px">(6,436)</math>&nbsp; is a local maximum.
 
|-
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;

Revision as of 21:31, 6 March 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  


Solution:

(a)

Step 1:  
We start by taking the derivative of    We have  
Now, we set    So, we have  
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:  
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  

(b)

Step 1:  
The critical points of    occur at    and  
Plugging these values into    we get the critical points
         and  
Step 2:  
Using the first derivative test and the information from part (a),
   is not a local minimum or local maximum and
   is a local maximum.

(c)

Step 1:  
Step 2:  
(d):  
Insert graph


Final Answer:  
   (a)      is increasing on    and decreasing on  
   (b)    The critical points are   and  
             is not a local minimum or local maximum and    is a local maximum.
   (c)   
   (d)    See above

Return to Sample Exam