Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp; We have &nbsp;<math style="vertical-align: -5px">f'(x)=24x^2-4x^3.</math>
 
|-
 
|-
|
+
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have &nbsp;<math style="vertical-align: -6px">0=4x^2(6-x).</math>
 
|-
 
|-
|
+
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=6.</math>
 
|-
 
|-
|
+
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals: &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,6),(6,\infty).</math>
 
|}
 
|}
  

Revision as of 20:57, 6 March 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  


Solution:

(a)

Step 1:  
We start by taking the derivative of    We have  
Now, we set    So, we have  
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
(d):  
Insert graph
Final Answer:  
   (a)   
   (b)   
   (c)   
   (d)    See above

Return to Sample Exam