Difference between revisions of "009A Sample Final 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 95: | Line 95: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
− | + | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.} | |
− | + | \end{array}</math> | |
− | |||
− | |||
|} | |} | ||
Line 109: | Line 107: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\lim_{x\rightarrow -\infty} \sqrt{9-\frac{1}{x^5}}}{\lim_{x\rightarrow -\infty}3+\frac{4}{x^2}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sqrt{9}}{3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{1.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 126: | Line 126: | ||
| '''(b)''' <math>\frac{-3}{4}</math> | | '''(b)''' <math>\frac{-3}{4}</math> | ||
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' <math>1</math> |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 20:37, 6 March 2017
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)
Foundations: |
---|
1. If we have |
2. |
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Since |
we have |
Step 2: |
---|
If we multiply both sides of the last equation by we get |
Now, using properties of limits, we have |
Step 3: |
---|
Solving for in the last equation, |
we get |
|
(c)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |