Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 95: Line 95:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|First, we write
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.}
|
+
\end{array}</math>
|-
 
|
 
 
|}
 
|}
  
Line 109: Line 107:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\lim_{x\rightarrow -\infty} \sqrt{9-\frac{1}{x^5}}}{\lim_{x\rightarrow -\infty}3+\frac{4}{x^2}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sqrt{9}}{3}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 126: Line 126:
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>1</math>
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:37, 6 March 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(c)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       


Final Answer:  
(a)
   (b)   
   (c)   

Return to Sample Exam