Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} 3 =3\ne 0,</math>
 +
|-
 +
|we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{-2} & = & \displaystyle{\lim _{x\rightarrow 8} \bigg[\frac{xf(x)}{3}\bigg]}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow 8} xf(x)}{\lim_{x\rightarrow 8} 3}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow 8} xf(x)}{3}.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 55: Line 65:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|If we multiply both sides of the last equation by &nbsp;<math>3,</math>&nbsp; we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-6=\lim_{x\rightarrow 8} xf(x)).</math>
 +
|-
 +
|Now, using properties of limits, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{10} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Solving for &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x)</math>&nbsp; in the last equation,
 +
|-
 +
|we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 8} f(x)=\frac{-3}{4}.</math>
 
|}
 
|}
  
Line 93: Line 124:
 
|'''(a)'''
 
|'''(a)'''
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>
 
|-
 
|-
 
|'''(c)'''
 
|'''(c)'''
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:24, 6 March 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
   (b)   
(c)

Return to Sample Exam