Difference between revisions of "009A Sample Final 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | <span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | ||
| − | <span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math> | + | <span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math> |
| − | <span class="exam">(b) <math style="vertical-align: - | + | <span class="exam">(b) <math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x),</math> given that <math style="vertical-align: -14px">\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math> |
| − | <span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math> | + | <span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math> |
Revision as of 14:27, 6 March 2017
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |