Difference between revisions of "009A Sample Final 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 26: | Line 26: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We first calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+}f(x).</math> We have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 0^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 0^+} x-\cos x}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0-\cos(0)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-1.} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we calculate <math style="vertical-align: -14px">\lim_{x\rightarrow 0^-}f(x).</math> We have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 0^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{x}{|x|}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{x}{-x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 0^-} -1}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-1.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 3: |
| + | |- | ||
| + | |Since | ||
|- | |- | ||
| | | | ||
| + | <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=-1,</math> | ||
|- | |- | ||
| − | | | + | |we have |
| + | |- | ||
| + | | <math>\lim_{x\rightarrow 3} f(x)=-1.</math> | ||
| + | |- | ||
| + | |But, | ||
| + | |- | ||
| + | | <math>f(0)=0\ne \lim_{x\rightarrow 3} f(x).</math> | ||
| + | |- | ||
| + | |Thus, <math style="vertical-align: -5px">f(x)</math> is not continuous. | ||
| + | |- | ||
| + | |It is a jump discontinuity. | ||
|} | |} | ||
| Line 47: | Line 80: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">f(x)</math> is not continuous. It is a jump discontinuity. |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:48, 6 March 2017
Discuss, without graphing, if the following function is continuous at
If you think is not continuous at what kind of discontinuity is it?
| Foundations: |
|---|
| is continuous at if |
Solution:
| Step 1: |
|---|
| We first calculate We have |
|
|
| Step 2: |
|---|
| Now, we calculate We have |
|
|
| Step 3: |
|---|
| Since |
|
|
| we have |
| But, |
| Thus, is not continuous. |
| It is a jump discontinuity. |
| Final Answer: |
|---|
| is not continuous. It is a jump discontinuity. |