Difference between revisions of "009C Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
|}
  

Revision as of 16:28, 5 March 2017

Consider the power series

(a) Find the radius of convergence of the above power series.

(b) Find the interval of convergence of the above power series.

(c) Find the closed formula for the function    to which the power series converges.

(d) Does the series

converge? If so, find its sum.

Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)
   (c)
   (d)

Return to Sample Exam