Difference between revisions of "009C Sample Final 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 6: | Line 6: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''Limit Comparison Test''' |
|- | |- | ||
| − | | | + | | Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences. |
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | If <math>\lim_{n\rightarrow \infty} \frac{a_n}{b_n}=L,</math> where <math>L</math> is a positive real number, |
|- | |- | ||
| − | | | + | | then <math>\sum_{n=1}^\infty a_n</math> and <math>\sum_{n=1}^\infty b_n</math> either both converge or both diverge. |
|} | |} | ||
| Line 23: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we note that |
| + | |- | ||
| + | | <math>\frac{n^3+7n}{\sqrt{1+n^{10}}}>0</math> | ||
| + | |- | ||
| + | |for all <math style="vertical-align: -3px">n\ge 1.</math> | ||
|- | |- | ||
| − | | | + | |This means that we can use a comparison test on this series. |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -14px">a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math> | ||
| + | |- | ||
| + | |We want to compare the series in this problem with | ||
| + | |- | ||
| + | | <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math> | ||
| + | |- | ||
| + | |This is a <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=2.</math> | ||
| + | |- | ||
| + | |Hence, <math>\sum_{n=1}^\infty b_n</math> converges | ||
|- | |- | ||
| | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{n\rightarrow \infty} \frac{a_n}{b_n}} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{(\frac{n^3+7n}{\sqrt{1+n^{10}}})}{(\frac{1}{n^2})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}} \bigg(\frac{\frac{1}{n^5}}{\frac{1}{n^5}}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1+\frac{7}{n^4}}{\sqrt{\frac{1}{n^{10}}+1}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{1.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, the series | ||
| + | |- | ||
| + | | <math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math> | ||
| + | |- | ||
| + | |converges by the Limit Comparison Test. | ||
|} | |} | ||
| Line 42: | Line 76: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | converges |
|} | |} | ||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 15:43, 5 March 2017
Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.
| Foundations: |
|---|
| Limit Comparison Test |
| Let and be positive sequences. |
| If where is a positive real number, |
| then and either both converge or both diverge. |
Solution:
| Step 1: |
|---|
| First, we note that |
| for all |
| This means that we can use a comparison test on this series. |
| Let |
| Step 2: |
|---|
| Let |
| We want to compare the series in this problem with |
| This is a -series with |
| Hence, converges |
| Step 3: |
|---|
| Now, we have |
| Therefore, the series |
| converges by the Limit Comparison Test. |
| Final Answer: |
|---|
| converges |