Difference between revisions of "009C Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' What two pieces of information do you need to write the equation of a line?
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
       You need the slope of the line and a point on the line.
 
|-
 
|-
|
+
|'''2.''' What is the slope of the tangent line of a parametric curve?
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
|}
  
  
 
'''Solution:'''
 
'''Solution:'''
 
'''(a)'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;  
+
!(a) &nbsp;  
 
|-
 
|-
|
+
|Insert graph
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
 
|-
 
|-
 
|
 
|
Line 49: Line 39:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we need to find the slope of the tangent line.
 
|-
 
|-
|
+
|Since &nbsp; <math style="vertical-align: -14px">\frac{dy}{dt}=3t^2-1</math> &nbsp; and &nbsp; <math style="vertical-align: -14px">\frac{dx}{dt}=2t,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t}.</math>
 
|}
 
|}
  
Line 59: Line 50:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, the origin corresponds to <math>x=0</math> and <math>y=0.</math>
 +
|-
 +
|This gives us two equations. When we solve for <math>t,</math> we get <math>t=0.</math>
 +
|-
 +
|Plugging in <math>t=0</math> into
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t},</math>
 +
|-
 +
|we see that <math>\frac{dy}{dx}</math> is undefined at <math>t=0.</math>
 
|-
 
|-
|
+
|So, there is no tangent line at the origin.
 
|}
 
|}
  
Line 68: Line 67:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; See above
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp;  There is no tangent line at the origin.
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:46, 5 March 2017

A curve is described parametrically by

(a) Sketch the curve for  

(b) Find the equation of the tangent line to the curve at the origin.

Foundations:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. What is the slope of the tangent line of a parametric curve?

       The slope is  


Solution:

(a)  
Insert graph

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since     and     we have

       

Step 2:  
Now, the origin corresponds to and
This gives us two equations. When we solve for we get
Plugging in into
       
we see that is undefined at
So, there is no tangent line at the origin.


Final Answer:  
    (a)    See above
    (b)    There is no tangent line at the origin.

Return to Sample Exam