Difference between revisions of "009C Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
|We note that  
 
|We note that  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1</math>&nbsp; or &nbsp;<math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1</math>&nbsp; or &nbsp;<math style="vertical-align: -5px">|f^{n+1}(z)|=|\sin(z)|\le 1.</math>
 
|-
 
|-
 
|Therefore, we have  
 
|Therefore, we have  

Revision as of 12:49, 5 March 2017

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.

Foundations:  
Taylor's Theorem
        Let    be a function whose  th derivative exists on an interval    and let    be in  
        Then, for each    in    there exists    between    and    such that
       
        where  
        Also,  


Solution:

Step 1:  
Using Taylor's Theorem, we have that the error in approximating    with
the Maclaurin polynomial of degree    is    where
       
Step 2:  
We note that
         or  
Therefore, we have
       
Now, we have the following table.
So,    is the smallest value of    where the error is less than or equal to 0.0001.
Therefore, for    the Maclaurin polynomial approximates    within 0.0001 of the actual value.


Final Answer:  
       

Return to Sample Exam