Difference between revisions of "009C Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 4: | Line 4: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''Taylor's Theorem''' |
| + | |- | ||
| + | | Let <math>f</math> be a function whose <math>n+1</math>th derivative exists on an interval <math>I</math> and let <math>c</math> be in <math>I.</math> | ||
|- | |- | ||
| − | | | + | | Then, for each <math>x</math> in <math>I,</math> there exists <math>z_x</math> between <math>x</math> and <math>c</math> such that |
|- | |- | ||
| − | | | + | | <math>f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^n+R_n(x),</math> |
|- | |- | ||
| − | | | + | | where <math>R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math> |
|- | |- | ||
| − | | | + | | Also, <math>|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math> |
|} | |} | ||
| Line 21: | Line 23: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Using Taylor's Theorem, we have that the error in approximating <math>\cos \frac{\pi}{3}</math> with |
| + | |- | ||
| + | |the Maclaurin polynomial of degree <math>n</math> is <math>R_n\bigg(\frac{\pi}{3}\bigg)</math> where | ||
|- | |- | ||
| − | | | + | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math> |
|- | |- | ||
| | | | ||
| Line 31: | Line 35: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |We note that <math>|f^{n+1}(z)|=|\cos(z)|\le 1</math> or <math>|f^{n+1}(z)|=|\cos(z)|\le 1.</math> |
| + | |- | ||
| + | |Therefore, we have | ||
| + | |- | ||
| + | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}.</math> | ||
| + | |- | ||
| + | |Now, we have the following table. | ||
| + | |- | ||
| + | |<table border="1" cellspacing="0" cellpadding="6" align = "center"> | ||
| + | <tr> | ||
| + | <td align = "center"><math> n</math></td> | ||
| + | <td align = "center"><math> \approx\frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}</math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>1</math></td> | ||
| + | <td align = "center"><math> 0.548311 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>2</math></td> | ||
| + | <td align = "center"><math> 0.191396</math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>3</math></td> | ||
| + | <td align = "center"><math> 0.050107 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>4</math></td> | ||
| + | <td align = "center"><math> 0.01049 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>5</math></td> | ||
| + | <td align = "center"><math> 0.00183 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>6</math></td> | ||
| + | <td align = "center"><math> 0.000274 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math>7</math></td> | ||
| + | <td align = "center"><math> 0.0000358 </math></td> | ||
| + | </tr> | ||
| + | </table> | ||
| + | |- | ||
| + | |So, <math>n=7</math> is the smallest value of <math>n</math> where the error is less than or equal to 0.0001. | ||
|- | |- | ||
| − | | | + | |Therefore, for <math>n=7</math> the Maclaurin polynomial approximates <math>\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. |
|} | |} | ||
| Line 40: | Line 87: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math>n=7.</math> |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:29, 5 March 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
| Foundations: |
|---|
| Taylor's Theorem |
| Let be a function whose th derivative exists on an interval and let be in |
| Then, for each in there exists between and such that |
| where |
| Also, |
Solution:
| Step 1: |
|---|
| Using Taylor's Theorem, we have that the error in approximating with |
| the Maclaurin polynomial of degree is where |
| Step 2: | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| We note that or | ||||||||||||||||
| Therefore, we have | ||||||||||||||||
| Now, we have the following table. | ||||||||||||||||
| So, is the smallest value of where the error is less than or equal to 0.0001. | ||||||||||||||||
| Therefore, for the Maclaurin polynomial approximates within 0.0001 of the actual value. |
| Final Answer: |
|---|