Difference between revisions of "009C Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|
+
|Now, we use the Ratio Test to determine the radius of convergence of this power series.
 
|-
 
|-
|
+
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+2)x^{n+1}}{2^{n+1}} \frac{2^n}{(n+1)x^n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{|x|}{2} \frac{n+2}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\frac{n+2}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{|x|}{2}.}
 +
\end{array}</math>
 +
|-
 +
|Now, the Ratio Test says this series converges if &nbsp;<math style="vertical-align: -14px">\frac{|x|}{2}<1.</math>&nbsp; So, &nbsp;<math style="vertical-align: -6px">|x|<2.</math>
 +
|-
 +
|Hence, the radius of convergence is &nbsp;<math style="vertical-align: 0px">R=2.</math>
 
|}
 
|}
  
Line 68: Line 82:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: 0px">R=2.</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:39, 5 March 2017

(a) Consider the function    Find the first three terms of its Binomial Series.

(b) Find its radius of convergence.

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
The Maclaurin series of    is
       
So, the Maclaurin series of    is
       
Step 2:  
Now, we use the Ratio Test to determine the radius of convergence of this power series.
We have
       
Now, the Ratio Test says this series converges if    So,  
Hence, the radius of convergence is  


Final Answer:  
   (a)   
   (b)    The radius of convergence is  

Return to Sample Exam