Difference between revisions of "009C Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|From part (a), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int \sin(x^2)~dx=\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.</math>
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \sin(x^2)~dx=\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}\bigg|_0^1.</math>
 
|}
 
|}
  
Line 59: Line 61:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Hence, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \sin(x^2)~dx} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n (1)^{4n+3}}{(4n+3)(2n+1)!}-\sum_{n=0}^\infty \frac{(-1)^n (0)^{4n+3}}{(4n+3)(2n+1)!}}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}-0}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}}
 +
\end{array}</math>
 
|}
 
|}
  
Line 70: Line 78:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math></math>  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}</math>  
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:12, 5 March 2017

(a) Express the indefinite integral    as a power series.

(b) Express the definite integral    as a number series.

Foundations:  
What is the power series of  
        The power series of    is  


Solution:

(a)

Step 1:  
The power series of    is  
So, the power series of     is
       
Step 2:  
Now, to express the indefinite integral as a power series, we have
       

(b)

Step 1:  
From part (a), we have
       
Now, we have
       
Step 2:  
Hence, we have
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam