Difference between revisions of "009C Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{} & = & \displaystyle{}\\
+
\displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\
 
&&\\
 
&&\\
& = & \displaystyle{}\\
+
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.}
&&\\
 
& = & \displaystyle{}
 
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 35: Line 33:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, to express the indefinite integral as a power series, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=0}^\infty \int \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 64: Line 68:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math></math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:07, 5 March 2017

(a) Express the indefinite integral    as a power series.

(b) Express the definite integral    as a number series.

Foundations:  
What is the power series of  
        The power series of    is  


Solution:

(a)

Step 1:  
The power series of    is  
So, the power series of     is
       
Step 2:  
Now, to express the indefinite integral as a power series, we have
       

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam