Difference between revisions of "009C Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; with &nbsp;<math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math>&nbsp; is  
+
|The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a parametric curve with &nbsp;<math style="vertical-align: -4px">\alpha \leq t \leq \beta </math>&nbsp; is  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha}^{\beta} \sqrt{\bigg(\frac{dx}{dt}\bigg)^2+\bigg(\frac{dy}{dt}\bigg)^2}~dt.</math>
 
|}
 
|}
  

Revision as of 21:18, 4 March 2017

Find the length of the curve given by

Foundations:  
The formula for the arc length    of a parametric curve with    is

       


Solution:

Step 1:  
Step 2:  


Final Answer:  
  

Return to Sample Exam