Difference between revisions of "009C Sample Final 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 4: | Line 4: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> | ||
|} | |} | ||
Line 21: | Line 16: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -14px">a=\frac{\pi}{4}.</math> |
|- | |- | ||
− | | | + | |First, we make a table to find the coefficients of the Taylor polynomial. |
|- | |- | ||
| | | | ||
+ | <table border="1" cellspacing="0" cellpadding="6" align = "center"> | ||
+ | <tr> | ||
+ | <td align = "center"><math> n</math></td> | ||
+ | <td align = "center"><math> f^{(n)}(x) </math></td> | ||
+ | <td align = "center"><math> f^{(n)}(a) </math></td> | ||
+ | <td align = "center"><math> \frac{f^{(n)}(a)}{n!} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>0</math></td> | ||
+ | <td align = "center"><math> \cos x </math></td> | ||
+ | <td align = "center"><math> \frac{\sqrt{2}}{2}</math></td> | ||
+ | <td align = "center"><math> \frac{\sqrt{2}}{2}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>1</math></td> | ||
+ | <td align = "center"><math> -\sin x</math></td> | ||
+ | <td align = "center"><math> -\frac{\sqrt{2}}{2} </math></td> | ||
+ | <td align = "center"><math> -\frac{\sqrt{2}}{2} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>2</math></td> | ||
+ | <td align = "center"><math> -\cos x </math></td> | ||
+ | <td align = "center"><math> -\frac{\sqrt{2}}{2} </math></td> | ||
+ | <td align = "center"><math> -\frac{\sqrt{2}}{4} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>3</math></td> | ||
+ | <td align = "center"><math> \sin x </math></td> | ||
+ | <td align = "center"><math> \frac{\sqrt{2}}{2} </math></td> | ||
+ | <td align = "center"><math> \frac{\sqrt{2}}{12}</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
|} | |} | ||
Line 31: | Line 58: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> |
+ | |- | ||
+ | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> we have | ||
+ | |- | ||
+ | | <math>T_0=\frac{\sqrt{2}}{2}</math> | ||
+ | |- | ||
+ | | <math>T_1=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)</math> | ||
+ | |- | ||
+ | | <math>T_2=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2</math> | ||
+ | |- | ||
+ | | <math>T_3=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2+\frac{\sqrt{2}}{12}\bigg(x-\frac{\pi}{4}\bigg)^3.</math> | ||
|- | |- | ||
− | |||
|} | |} | ||
Line 40: | Line 76: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> |
+ | |- | ||
+ | | <math>T_0=\frac{\sqrt{2}}{2}</math> | ||
+ | |- | ||
+ | | <math>T_1=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)</math> | ||
+ | |- | ||
+ | | <math>T_2=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2</math> | ||
+ | |- | ||
+ | | <math>T_3=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\bigg(x-\frac{\pi}{4}\bigg)-\frac{\sqrt{2}}{4}\bigg(x-\frac{\pi}{4}\bigg)^2+\frac{\sqrt{2}}{12}\bigg(x-\frac{\pi}{4}\bigg)^3</math> | ||
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:21, 4 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
Foundations: |
---|
The Taylor polynomial of at is |
where |
Solution:
Step 1: | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Let | ||||||||||||||||||||
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
Step 2: |
---|
Let be the Taylor polynomial of order |
Since we have |
Final Answer: |
---|
Let be the Taylor polynomial of order |