Difference between revisions of "009C Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Consider the function
 
<span class="exam"> Consider the function
  
::::<math>f(x)=e^{-\frac{1}{3}x}</math>
+
::<math>f(x)=e^{-\frac{1}{3}x}</math>
  
::<span class="exam">a) Find a formula for the <math>n</math>th derivative <math>f^{(n)}(x)</math> of <math>f</math> and then find <math>f'(3).</math>
+
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math>f^{(n)}(x)</math>&nbsp; of &nbsp;<math>f</math>&nbsp; and then find &nbsp;<math>f'(3).</math>
  
::<span class="exam">b) Find the Taylor series for <math>f(x)</math> at <math>x_0=3,</math> i.e. write <math>f(x)</math> in the form  
+
<span class="exam">(b) Find the Taylor series for &nbsp;<math>f(x)</math>&nbsp; at &nbsp;<math>x_0=3,</math>&nbsp; i.e. write &nbsp;<math>f(x)</math>&nbsp; in the form  
  
::::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
+
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 22: Line 22:
 
|
 
|
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 64: Line 65:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 17:56, 4 March 2017

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)

Return to Sample Exam