Difference between revisions of "009B Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|'''2.''' The volume of a solid obtained by rotating an area around the &nbsp;<math style="vertical-align: -4px">x</math>-axis using the washer method is given by   
+
|'''2.''' The volume of a solid obtained by rotating an area around the &nbsp;<math style="vertical-align: 0px">x</math>-axis using the washer method is given by   
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r_{\text{inner}}</math>&nbsp; is the inner radius of the washer and &nbsp;<math style="vertical-align: 0px">r_{\text{outer}}</math>&nbsp; is the outer radius of the washer.
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -18px">\int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}</math>&nbsp; is the inner radius of the washer and &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}</math>&nbsp; is the outer radius of the washer.
 
|}
 
|}
  
Line 21: Line 21:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we need to find the intersection points of &nbsp;<math>y=x</math>&nbsp; and &nbsp;<math>y=x^2.</math>
+
|First, we need to find the intersection points of &nbsp;<math style="vertical-align: -5px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=x^2.</math>
 
|-
 
|-
|To do this, we need to solve &nbsp;<math>x=x^2.</math>
+
|To do this, we need to solve &nbsp;<math style="vertical-align: 0px">x=x^2.</math>
 
|-
 
|-
 
|Moving all the terms on one side of the equation, we get  
 
|Moving all the terms on one side of the equation, we get  
Line 33: Line 33:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, these two curves intersect at &nbsp;<math>x=0</math>&nbsp; and &nbsp;<math>x=1.</math>
+
|Hence, these two curves intersect at &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=1.</math>
 
|-
 
|-
|So, we are interested in the region between &nbsp;<math>x=0</math>&nbsp; and &nbsp;<math>x=1.</math>
+
|So, we are interested in the region between &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|}
 
|}
  
Line 43: Line 43:
 
|We use the washer method to calculate this volume.  
 
|We use the washer method to calculate this volume.  
 
|-
 
|-
|The outer radius is &nbsp;<math>r_{\text{outer}}=2-x^2</math>&nbsp; and
+
|The outer radius is &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}=2-x^2</math>&nbsp; and
 
|-
 
|-
|the inner radius is &nbsp;<math>r_{\text{inner}}=2-x.</math>&nbsp;
+
|the inner radius is &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}=2-x.</math>&nbsp;
 
|-
 
|-
 
|Therefore, the volume of the solid is  
 
|Therefore, the volume of the solid is  

Revision as of 16:21, 4 March 2017

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  

Foundations:  
1. You can find the intersection points of two functions, say  

        by setting    and solving for  

2. The volume of a solid obtained by rotating an area around the  -axis using the washer method is given by

          where    is the inner radius of the washer and    is the outer radius of the washer.


Solution:

Step 1:  
First, we need to find the intersection points of    and  
To do this, we need to solve  
Moving all the terms on one side of the equation, we get
       
Hence, these two curves intersect at    and  
So, we are interested in the region between    and  
Step 2:  
We use the washer method to calculate this volume.
The outer radius is    and
the inner radius is   
Therefore, the volume of the solid is
       
Step 3:  
Now, we integrate to get
       


Final Answer:  
       

Return to Sample Exam